Build a matrix where the elements are values of
a measure variable, and the rows and columns
are formed by observed combinations of ID
variables. The ID variables picked
out by rows
and cols
must uniquely identify
cells. to_matrix()
, unlike stats::xtabs()
,
does not sum across multiple combinations of
ID variables.
Arguments
- x
A data frame.
- rows
The ID variable(s) used to distinguish rows in the matrix.
- cols
The ID variable(s) used to distinguish columns in the matrix.
- measure
The measure variable, eg rates or counts.
Examples
x <- expand.grid(age = c(0, 1, 2),
sex = c("F", "M"),
region = c("A", "B"),
year = 2000:2001)
x$count <- 1:24
to_matrix(x,
rows = c(age, sex),
cols = c(region, year),
measure = count)
#> A.2000 B.2000 A.2001 B.2001
#> 0.F 1 7 13 19
#> 1.F 2 8 14 20
#> 2.F 3 9 15 21
#> 0.M 4 10 16 22
#> 1.M 5 11 17 23
#> 2.M 6 12 18 24
to_matrix(x,
rows = c(age, sex, region),
cols = year,
measure = count)
#> 2000 2001
#> 0.F.A 1 13
#> 1.F.A 2 14
#> 2.F.A 3 15
#> 0.M.A 4 16
#> 1.M.A 5 17
#> 2.M.A 6 18
#> 0.F.B 7 19
#> 1.F.B 8 20
#> 2.F.B 9 21
#> 0.M.B 10 22
#> 1.M.B 11 23
#> 2.M.B 12 24
## cells not uniquely identified
try(
to_matrix(x,
rows = age,
cols = sex,
measure = count)
)
#> Error : 'x' has two rows with values c(age="0", sex="F")