Skip to contents

Density, distribution function, quantile function and random generation for the binomial distribution, modified to work with rvecs.

Usage

dbinom_rvec(x, size, prob, log = FALSE)

pbinom_rvec(q, size, prob, lower.tail = TRUE, log.p = FALSE)

qbinom_rvec(p, size, prob, lower.tail = TRUE, log.p = FALSE)

rbinom_rvec(n, size, prob, n_draw = NULL)

Arguments

x

Quantiles. Can be an rvec.

size

Number of trials. See dbinom(). Can be an rvec.

prob

Probability of success in each trial. See dbinom(). Can be an rvec.

log, log.p

Whether to return results on a log scale. Default is FALSE. Cannot be an rvec.

q

Quantiles. Can be an rvec.

lower.tail

Whether to return \(P[X \le x]\), as opposed to \(P[X > x]\). Default is TRUE. Cannot be an rvec.

p

Probabilities. Can be an rvec.

n

The length of random vector being created. Cannot be an rvec.

n_draw

Number of random draws in the random vector being created. Cannot be an rvec.

Value

  • If any of the arguments are rvecs, or if a value for n_draw is supplied, then an rvec; otherwise an ordinary R vector.

  • Unlike base rbinom(), rbinom_rvec() always returns doubles.

Details

Functions dbinom_rvec(), pbinom_rvec(), pbinom_rvec() and rbinom_rvec() work like base R functions dbinom(), pbinom(), qbinom(), and rbinom(), except that they accept rvecs as inputs. If any input is an rvec, then the output will be too. Function rbinom_rvec() also returns an rvec if a value for n_draw is supplied.

dbinom_rvec(), pbinom_rvec(), pbinom_rvec() and rbinom_rvec() use tidyverse vector recycling rules:

  • Vectors of length 1 are recycled

  • All other vectors must have the same size

See also

Examples

x <- rvec(list(c(3, 8),
               c(0, 2)))
dbinom_rvec(x, size = 8, prob = 0.3)
#> <rvec_dbl<2>[2]>
#> [1] 0.2541,0.00006561 0.05765,0.2965   
pbinom_rvec(x, size = 8, prob = 0.3)
#> <rvec_dbl<2>[2]>
#> [1] 0.8059,1       0.05765,0.5518

rbinom_rvec(n = 2,
            size = 10,
            prob = c(0.7, 0.3),
            n_draw = 1000)
#> <rvec_dbl<1000>[2]>
#> [1] 7 (4, 9) 3 (1, 6)