Extract the matrix and offset used by a scaled SVD summary of a demographic database.
Usage
# S3 method for class 'bage_ssvd'
components(object, n_comp = NULL, indep = NULL, age_labels = NULL, ...)
Arguments
- object
An object of class
"bage_ssvd"
.- n_comp
The number of components. The default is half the total number of components of
object
.- indep
Whether to use independent or joint SVDs for each sex/gender. If no value is supplied, an SVD with no sex/gender dimension is used. Note that the default is different from
SVD()
.- age_labels
Age labels for the desired age or age-sex profile. If no labels are supplied, the most detailed profile available is used.
- ...
Not currently used.
Scaled SVDs of demographic databases in bage
HMD
Mortality rates from the Human Mortality Database.
See also
generate() Randomly generate age-profiles, or age-sex profiles, based on a scaled SVD summary.
SVD()
SVD prior for terms involving age.SVD_AR1()
,SVD_AR()
,SVD_RW()
,SVD_RW2()
Dynamic SVD priors for terms involving age and time.poputils::age_labels()
Generate age labels.
Examples
## females and males combined
components(LFP, n_comp = 3)
#> # A tibble: 52 × 3
#> component age value
#> <fct> <chr> <dbl>
#> 1 Offset 15-19 -0.839
#> 2 Offset 20-24 0.754
#> 3 Offset 25-29 1.46
#> 4 Offset 30-34 1.56
#> 5 Offset 35-39 1.63
#> 6 Offset 40-44 1.68
#> 7 Offset 45-49 1.58
#> 8 Offset 50-54 1.25
#> 9 Offset 55-59 0.645
#> 10 Offset 60-64 -0.398
#> # ℹ 42 more rows
## females and males modelled independently
components(LFP, indep = TRUE, n_comp = 3)
#> # A tibble: 104 × 4
#> component sex age value
#> <fct> <chr> <chr> <dbl>
#> 1 Offset Female 15-19 -0.989
#> 2 Offset Female 20-24 0.455
#> 3 Offset Female 25-29 0.898
#> 4 Offset Female 30-34 0.881
#> 5 Offset Female 35-39 0.985
#> 6 Offset Female 40-44 1.10
#> 7 Offset Female 45-49 1.04
#> 8 Offset Female 50-54 0.734
#> 9 Offset Female 55-59 0.162
#> 10 Offset Female 60-64 -0.857
#> # ℹ 94 more rows
## joint model for females and males
components(LFP, indep = FALSE, n_comp = 3)
#> # A tibble: 104 × 4
#> component sex age value
#> <fct> <chr> <chr> <dbl>
#> 1 Offset Female 15-19 -1.00
#> 2 Offset Female 20-24 0.481
#> 3 Offset Female 25-29 0.890
#> 4 Offset Female 30-34 0.851
#> 5 Offset Female 35-39 0.965
#> 6 Offset Female 40-44 1.09
#> 7 Offset Female 45-49 1.05
#> 8 Offset Female 50-54 0.747
#> 9 Offset Female 55-59 0.171
#> 10 Offset Female 60-64 -0.855
#> # ℹ 94 more rows
## specify age groups
labels <- poputils::age_labels(type = "five", min = 15, max = 60)
components(LFP, age_labels = labels)
#> # A tibble: 36 × 3
#> component age value
#> <fct> <chr> <dbl>
#> 1 Offset 15-19 -1.00
#> 2 Offset 20-24 0.737
#> 3 Offset 25-29 1.49
#> 4 Offset 30-34 1.64
#> 5 Offset 35-39 1.71
#> 6 Offset 40-44 1.74
#> 7 Offset 45-49 1.62
#> 8 Offset 50-54 1.28
#> 9 Offset 55-59 0.653
#> 10 Component 1 15-19 -0.279
#> # ℹ 26 more rows