Extract the matrix and offset used by a scaled SVD summary of a demographic database.
Usage
# S3 method for class 'bage_ssvd'
components(
object,
v = NULL,
n_comp = NULL,
indep = NULL,
age_labels = NULL,
...
)Arguments
- object
An object of class
"bage_ssvd".- v
Version of scaled SVD components to use. If no value is suppled, the most recent version is used.
- n_comp
The number of components. The default is half the total number of components of
object.- indep
Whether to use independent or joint SVDs for each sex/gender, if the data contains a sex/gender variable. The default is to use independent SVDs. To obtain results for the total population when the data contains a sex/gender variable, set
indeptoNA.- age_labels
Age labels for the desired age or age-sex profile. If no labels are supplied, the most detailed profile available is used.
- ...
Not currently used.
Scaled SVDs of demographic databases in bage
HMDMortality rates from the Human Mortality Database.HFDFertility rates from the Human Fertility Database.
See also
generate() Randomly generate age-profiles, or age-sex profiles, based on a scaled SVD summary.
SVD()SVD prior for terms involving age.SVD_AR1(),SVD_AR(),SVD_RW(),SVD_RW2()Dynamic SVD priors for terms involving age and time.poputils::age_labels()Generate age labels.
Examples
## females and males modeled independently
components(LFP, n_comp = 3)
#> # A tibble: 104 × 4
#> component sex age value
#> <fct> <chr> <chr> <dbl>
#> 1 Offset Female 15-19 -1.02
#> 2 Offset Female 20-24 0.470
#> 3 Offset Female 25-29 0.949
#> 4 Offset Female 30-34 0.924
#> 5 Offset Female 35-39 1.02
#> 6 Offset Female 40-44 1.12
#> 7 Offset Female 45-49 1.05
#> 8 Offset Female 50-54 0.729
#> 9 Offset Female 55-59 0.0967
#> 10 Offset Female 60-64 -0.947
#> # ℹ 94 more rows
## joint model for females and males
components(LFP, indep = FALSE, n_comp = 3)
#> # A tibble: 104 × 4
#> component sex age value
#> <fct> <chr> <chr> <dbl>
#> 1 Offset Female 15-19 -1.03
#> 2 Offset Female 20-24 0.496
#> 3 Offset Female 25-29 0.936
#> 4 Offset Female 30-34 0.895
#> 5 Offset Female 35-39 1.00
#> 6 Offset Female 40-44 1.12
#> 7 Offset Female 45-49 1.06
#> 8 Offset Female 50-54 0.740
#> 9 Offset Female 55-59 0.108
#> 10 Offset Female 60-64 -0.949
#> # ℹ 94 more rows
## females and males combined
components(LFP, indep = NA, n_comp = 3)
#> # A tibble: 52 × 3
#> component age value
#> <fct> <chr> <dbl>
#> 1 Offset 15-19 -0.839
#> 2 Offset 20-24 0.774
#> 3 Offset 25-29 1.48
#> 4 Offset 30-34 1.58
#> 5 Offset 35-39 1.66
#> 6 Offset 40-44 1.70
#> 7 Offset 45-49 1.59
#> 8 Offset 50-54 1.26
#> 9 Offset 55-59 0.632
#> 10 Offset 60-64 -0.434
#> # ℹ 42 more rows
## specify age groups
labels <- poputils::age_labels(type = "five", min = 15, max = 60)
components(LFP, age_labels = labels)
#> # A tibble: 72 × 4
#> component sex age value
#> <fct> <chr> <chr> <dbl>
#> 1 Offset Female 15-19 -1.16
#> 2 Offset Female 20-24 0.475
#> 3 Offset Female 25-29 0.986
#> 4 Offset Female 30-34 1.00
#> 5 Offset Female 35-39 1.10
#> 6 Offset Female 40-44 1.18
#> 7 Offset Female 45-49 1.09
#> 8 Offset Female 50-54 0.765
#> 9 Offset Female 55-59 0.122
#> 10 Offset Male 15-19 -0.888
#> # ℹ 62 more rows