Package index
-
AR() - Autoregressive Prior
-
AR1() - Autoregressive Prior of Order 1
-
HFD - Components from Human Fertility Database
-
HMD - Components from Human Mortality Database
-
Known() - Known Prior
-
LFP - Components from OECD Labor Force Participation Data
-
Lin() - Linear Prior with Independent Normal Errors
-
Lin_AR() - Linear Prior with Autoregressive Errors
-
Lin_AR1() - Linear Prior with Autoregressive Errors of Order 1
-
N() - Normal Prior
-
NFix() - Normal Prior with Fixed Variance
-
RW() - Random Walk Prior
-
RW2() - Second-Order Random Walk Prior
-
RW2_Infant() - Second-Order Random Walk Prior with 'Infant' Indicator
-
RW2_Seas() - Second-Order Random Walk Prior with Seasonal Effect
-
RW_Seas() - Random Walk Prior with Seasonal Effect
-
SVD() - SVD-Based Prior for Age or Age-Sex Profiles
-
Sp() - P-Spline Prior
-
augment(<bage_mod>) - Extract Data and Modelled Values
-
components(<bage_mod>) - Extract Values for Hyper-Parameters
-
components(<bage_ssvd>) - Extract Components used by SVD Summary
-
computations() - Information on Computations Performed During Model Fitting
-
confidential - Confidentialization
-
datamods - Data Models
-
fit(<bage_mod>) - Fit a Model
-
forecast(<bage_mod>) - Use a Model to Make a Forecast
-
generate(<bage_prior_ar>)generate(<bage_prior_known>)generate(<bage_prior_lin>)generate(<bage_prior_linar>)generate(<bage_prior_linex>)generate(<bage_prior_norm>)generate(<bage_prior_normfixed>)generate(<bage_prior_rwrandom>)generate(<bage_prior_rwrandomseasfix>)generate(<bage_prior_rwrandomseasvary>)generate(<bage_prior_rwzero>)generate(<bage_prior_rwzeroseasfix>)generate(<bage_prior_rwzeroseasvary>)generate(<bage_prior_rw2random>)generate(<bage_prior_rw2randomseasfix>)generate(<bage_prior_rw2randomseasvary>)generate(<bage_prior_rw2zero>)generate(<bage_prior_rw2zeroseasfix>)generate(<bage_prior_rw2zeroseasvary>)generate(<bage_prior_spline>)generate(<bage_prior_svd>)generate(<bage_prior_svd_ar>)generate(<bage_prior_svd_rwrandom>)generate(<bage_prior_svd_rwzero>)generate(<bage_prior_svd_rw2random>)generate(<bage_prior_svd_rw2zero>) - Generate Values from Priors
-
generate(<bage_ssvd>) - Generate Random Age or Age-Sex Profiles
-
is_fitted() - Test Whether a Model has Been Fitted
-
isl_deaths - Deaths in Iceland
-
kor_births - Births in South Korea
-
mod_binom() - Specify a Binomial Model
-
mod_norm() - Specify a Normal Model
-
mod_pois() - Specify a Poisson Model
-
n_draw(<bage_mod>) - Get the Number of Draws for a Model Object
-
nld_expenditure - Per Capita Health Expenditure in the Netherlands, 2003-2011
-
nzl_divorces - Divorces in New Zealand
-
nzl_households - People in One-Person Households in New Zealand
-
nzl_injuries - Fatal Injuries in New Zealand
-
print(<bage_mod>) - Printing a Model
-
priors - Priors for Intercept, Main Effects, Interactions
-
prt_deaths - Deaths in Portugal
-
replicate_data() - Create Replicate Data
-
report_sim() - Simulation Study of a Model
-
set_confidential_rr3() - Specify RR3 Confidentialization
-
set_covariates() - Specify Covariates
-
set_datamod_exposure() - Specify Exposure Data Model
-
set_datamod_miscount() - Specify Miscount Data Model
-
set_datamod_noise() - Specify Noise Data Model
-
set_datamod_outcome_rr3() - Specify RR3 Data Model
-
set_datamod_overcount() - Specify Overcount Data Model
-
set_datamod_undercount() - Specify Undercount Data Model
-
set_disp() - Specify Prior for Dispersion or Standard Deviation
-
set_n_draw() - Specify Number of Draws from Prior or Posterior Distribution
-
set_prior() - Specify Prior for Model Term
-
set_seeds() - Reset Random Seeds in Model Object
-
set_var_age() - Specify Age Variable
-
set_var_sexgender() - Specify Sex or Gender Variable
-
set_var_time() - Specify Time Variable
-
swe_infant - Infant Mortality in Sweden
-
tidy(<bage_mod>) - Summarize Terms from a Fitted Model
-
unfit() - Unfit a Model
-
usa_deaths - Accidental Deaths in the USA