Specify the mean of prior for the dispersion parameter (in Poisson and binomial models) or the standard deviation parameter (in normal models.)
Arguments
- mod
An object of class
"bage_mod", created withmod_pois(),mod_binom(), ormod_norm().- mean
Mean value for the exponential prior. In Poisson and binomial models, can be set to 0. Default is
1.
Details
The dispersion or mean parameter has an exponential distribution with mean \(\mu\),
$$p(\xi) = \frac{1}{\mu}\exp\left(\frac{-\xi}{\mu}\right).$$
By default \(\mu\) equals 1.
In Poisson and binomial models,
mean can be set to 0, implying
that the dispersion term is also 0.
In normal models, mean must be non-negative.
If set_disp() is applied to
a fitted model, set_disp() unfits
the model, deleting existing estimates.
See also
mod_pois(),mod_binom(),mod_norm()Specify a model for rates, probabilities, or meansset_prior()Specify prior for a termset_n_draw()Specify the number of drawsis_fitted()Test whether a model is fitted
Examples
mod <- mod_pois(injuries ~ age:sex + ethnicity + year,
data = nzl_injuries,
exposure = popn)
mod
#>
#> ------ Unfitted Poisson model ------
#>
#> injuries ~ age:sex + ethnicity + year
#>
#> exposure: popn
#>
#> term prior along n_par n_par_free
#> (Intercept) NFix() - 1 1
#> ethnicity NFix() - 2 2
#> year RW() year 19 19
#> age:sex RW() age 24 24
#>
#> disp: mean = 1
#>
#> n_draw var_time var_age var_sexgender
#> 1000 year age sex
#>
mod |> set_disp(mean = 0.1)
#>
#> ------ Unfitted Poisson model ------
#>
#> injuries ~ age:sex + ethnicity + year
#>
#> exposure: popn
#>
#> term prior along n_par n_par_free
#> (Intercept) NFix() - 1 1
#> ethnicity NFix() - 2 2
#> year RW() year 19 19
#> age:sex RW() age 24 24
#>
#> disp: mean = 0.1
#>
#> n_draw var_time var_age var_sexgender
#> 1000 year age sex
#>
mod |> set_disp(mean = 0)
#>
#> ------ Unfitted Poisson model ------
#>
#> injuries ~ age:sex + ethnicity + year
#>
#> exposure: popn
#>
#> term prior along n_par n_par_free
#> (Intercept) NFix() - 1 1
#> ethnicity NFix() - 2 2
#> year RW() year 19 19
#> age:sex RW() age 24 24
#>
#> n_draw var_time var_age var_sexgender
#> 1000 year age sex
#>