Specify which variable (if any) represents age.
Functions mod_pois()
, mod_binom()
,
and mod_norm()
try to infer the age variable
from variable names, but do not always get it right.
Arguments
- mod
An object of class
"bage_mod"
, created withmod_pois()
,mod_binom()
, ormod_norm()
.- name
The name of the age variable.
Details
In an R formula
, a 'variable' is different
from a 'term'. For instance,
~ age + region + age:region
contains variables age
and region
,
and terms age
, region
, and age:region
.
By default, bage gives a term involving age a
(RW()
) prior. Changing the age variable
via set_var_age()
can change priors:
see below for an example.
If set_var_age()
is applied to
a fitted model, it 'unfits'
the model, deleting existing estimates.
See also
set_var_sexgender()
Set sex or gender variableset_var_time()
Set time variableis_fitted()
Test whether a model is fittedinternally, bage uses
poputils::find_var_age()
to locate age variables
Examples
## rename 'age' variable to something unusual
injuries2 <- nzl_injuries
injuries2$age_last_birthday <- injuries2$age
## mod_pois does not recognize age variable
mod <- mod_pois(injuries ~ age_last_birthday * ethnicity + year,
data = injuries2,
exposure = popn)
mod
#>
#> ------ Unfitted Poisson model ------
#>
#>
#> injuries ~ age_last_birthday * ethnicity + year
#>
#> exposure = popn
#>
#>
#> term prior along n_par n_par_free
#> (Intercept) NFix() - 1 1
#> age_last_birthday N() - 12 12
#> ethnicity NFix() - 2 2
#> year RW() year 19 18
#> age_last_birthday:ethnicity N() - 24 24
#>
#>
#> n_draw pr_mean_disp var_time
#> 1000 1 year
#>
## so we set the age variable explicitly
## (which, as a side effect, changes the prior on
## the age main effect)
mod |>
set_var_age(name = "age_last_birthday")
#>
#> ------ Unfitted Poisson model ------
#>
#>
#> injuries ~ age_last_birthday * ethnicity + year
#>
#> exposure = popn
#>
#>
#> term prior along n_par n_par_free
#> (Intercept) NFix() - 1 1
#> age_last_birthday RW() age_last_birthday 12 11
#> ethnicity NFix() - 2 2
#> year RW() year 19 18
#> age_last_birthday:ethnicity N() - 24 24
#>
#>
#> n_draw pr_mean_disp var_time var_age
#> 1000 1 year age_last_birthday
#>