After calling a function such as mod_pois()
or
set_prior()
it is good practice to print the
model object at the console, to check the model's
structure. The output from print()
has
the following components:
A header giving the class of the model and noting whether the model has been fitted.
A formula giving the outcome variable and terms for the model.
A table giving the number of parameters, and (fitted models only) the standard deviation across those parameters, a measure of the term's importance. See
priors()
andtidy()
.Values for other model settings. See
set_disp()
,set_var_age()
,set_var_sexgender()
,set_var_time()
,set_n_draw()
Details on computations (fitted models only). See
computations()
.
Usage
# S3 method for class 'bage_mod'
print(x, ...)
Arguments
- x
Object of class
"bage_mod"
, typically created withmod_pois()
,mod_binom()
, ormod_norm()
.- ...
Unused. Included for generic consistency only.
See also
mod_pois()
,mod_binom()
,mod_norm()
Model specification and classfit.bage_mod() and
is_fitted()
Model fittingpriors Overview of priors for model terms
tidy.bage_mod() Number of parameters, and standard deviations
set_disp()
Dispersionset_var_age()
,set_var_sexgender()
,set_var_time()
Age, sex/gender and time variablesset_n_draw()
Model draws
Examples
mod <- mod_pois(injuries ~ age + sex + year,
data = nzl_injuries,
exposure = popn)
## print unfitted model
mod
#>
#> ------ Unfitted Poisson model ------
#>
#> injuries ~ age + sex + year
#>
#> exposure = popn
#>
#> term prior along n_par n_par_free
#> (Intercept) NFix() - 1 1
#> age RW() age 12 12
#> sex NFix() - 2 2
#> year RW() year 19 19
#>
#> disp: mean = 1
#>
#> n_draw var_time var_age var_sexgender
#> 1000 year age sex
#>
mod <- fit(mod)
## print fitted model
mod
#>
#> ------ Fitted Poisson model ------
#>
#> injuries ~ age + sex + year
#>
#> exposure = popn
#>
#> term prior along n_par n_par_free std_dev
#> (Intercept) NFix() - 1 1 -
#> age RW() age 12 12 0.76
#> sex NFix() - 2 2 0.72
#> year RW() year 19 19 0.08
#>
#> disp: mean = 1
#>
#> n_draw var_time var_age var_sexgender optimizer
#> 1000 year age sex multi
#>
#> time_total time_optim time_report iter converged message
#> 0.18 0.08 0.07 13 TRUE relative convergence (4)
#>